
Cryptex Security Review
Pashov Audit Group

Conducted by: DadeKuma, DanOgurtsov, ZanyBonzy
September 30th - October 4th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About TCAP
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] Add a form of access control to takeFee
[M-02] Circuit breakers are not considered when
processing Chainlink's answer

8.2. Low Findings
[L-01] No check for Arbitrum Sequencer when handling
prices
[L-02] Use of a general staleness time is not advisable
[L-03] Withdrawal may sometimes fail if fee taken is
high enough
[L-04] Users can entirely skip paying fees if there is no
feeRecipient
[L-05] Full liquidation can be drawn out or temporarily
prevented
[L-06] Users that mint zero shares will lose their funds
[L-07] Liquidators might get a reward that is less than
expected
[L-08] Excessive loans to trigger a liquidation
[L-09] Pocket inflation attack
[L-10] Loans that use an AAVE pocket may become non-
liquidatable

1

2

2

2

2

3

3
3
4

4

5

7

7

7

7

9

9

9

10

11

12

13

14

14

15

16

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the cryptexfinance/tcapv2.0 repository was done
by Pashov Audit Group, with a focus on the security aspects of the application's
smart contracts implementation.

4. About TCAP
The Total Market Cap Token (TCAP) by Cryptex Finance is a crypto index token
that provides investors with exposure to the entire cryptocurrency market's value
through a single synthetic asset.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - f0168f3fe66c1fba4fd70ffdcdc87287e8f0cb6a

fixes review commit hash - 71ee4a810febe2cb5fcbf2102076b44525005289

Scope

The following smart contracts were in scope of the audit:

TCAPV2

Vault

Constants

FeeCalculatorLib

LiquidationLib

Multicall

AggregatedChainlinkOracle

BaseOracleUSD

TCAPTargetOracle

AaveV3Pocket

BasePocket

4

https://github.com/cryptexfinance/tcapv2.0/tree/f0168f3fe66c1fba4fd70ffdcdc87287e8f0cb6a
https://github.com/cryptexfinance/tcapv2.0/tree/71ee4a810febe2cb5fcbf2102076b44525005289

7. Executive Summary
Over the course of the security review, DadeKuma, DanOgurtsov, ZanyBonzy
engaged with Cryptex to review TCAP. In this period of time a total of 12 issues
were uncovered.

Protocol Summary
Protocol Name TCAP

Repository https://github.com/cryptexfinance/tcapv2.0

Date September 30th - October 4th

Protocol Type Synthetic asset

Findings Count
Severity Amount

Medium 2

Low 10

Total Findings 12

5

Summary of Findings
ID Title Severity Status

[M-01] Add a form of access control to
takeFee Medium Resolved

[M-02] Circuit breakers are not considered
when processing Chainlink's answer Medium Resolved

[L-01] No check for Arbitrum Sequencer
when handling prices Low Acknowledged

[L-02] Use of a general staleness time is not
advisable Low Resolved

[L-03] Withdrawal may sometimes fail if fee
taken is high enough Low Acknowledged

[L-04] Users can entirely skip paying fees if
there is no feeRecipient Low Resolved

[L-05] Full liquidation can be drawn out or
temporarily prevented Low Resolved

[L-06] Users that mint zero shares will lose
their funds Low Resolved

[L-07] Liquidators might get a reward that is
less than expected Low Acknowledged

[L-08] Excessive loans to trigger a
liquidation Low Acknowledged

[L-09] Pocket inflation attack Low Acknowledged

[L-10] Loans that use an AAVE pocket may
become non-liquidatable Low Acknowledged

6

8. Findings

8.1. Medium Findings

[M-01] Add a form of access control to
takeFee

Severity
Impact: Medium

Likelihood: Medium

Description
takeFee() function is available for everyone. Imagine depositors A, B, C,
each deposited 10 ETH, and holding 10 shares each, and they have the same
debt. Anyone can call takeFee() for A and B, decreasing their shares
gradually to 9.99. As a result, depositor С has more shares.

function takeFee(address user, uint96 pocketId) external {
 IPocket pocket = _getVaultStorage().pockets[pocketId].pocket;
 if (address(pocket) == address(0)) revert InvalidValue
 (IVault.ErrorCode.INVALID_POCKET);
 _takeFee(pocket, user, pocketId);
 }

Recommendation
Consider limiting the function to a protected role and/or allowing a user to
only take fee for himself.

[M-02] Circuit breakers are not considered
when processing Chainlink's answer

Severity
7

Impact: High

Likelihood: Low

Description
Every Chainlink feed has a minimum and maximum price. However, due to
the circuit breaker, if an asset's price moves outside these limits, the provided
answer will still be capped.

This can lead to an incorrect price if the actual price falls below the
aggregator's minAnswer , as Chainlink will continue providing the capped value
instead of the true one.

The Chainlink documentation notes that "On most data feeds, these values are
no longer used and they do not prevent your application from reading the most
recent answer.". However, this is not the case on Arbitrum, as for most data
feeds (including ETH and most stablecoins), these values are indeed used, for
example, the ETH/USD aggregator: link

Recommendations
Consider checking that the price is always between the aggregator's minAnswer
and maxAnswer :

function latestPrice
 (bool checkStaleness) public view virtual override returns (uint256) {
 ...
- assert(answer > 0);
+ require(answer > MIN_ANSWER && answer < MAX_ANSWER);
 ...
 }

8

https://arbiscan.io/address/0x3607e46698d218B3a5Cae44bF381475C0a5e2ca7#readContract

8.2. Low Findings

[L-01] No check for Arbitrum Sequencer
when handling prices

Contracts will be deployed on Arbitrum but AggregatedChainlinkOracle.sol
doesn't check if Arbitrum Sequencer is down. If it goes down, oracle data will
not be kept up to date, and thus could become stale. However, users are able to
continue to interact with the protocol directly through the L1 optimistic rollup
contract. While a number of the protocol operations actually allow for stale
pricing, some don't, e.g. minting TCAPV2.

As a result, during the sequencer downtime period, users whose position might
otherwise be unhealthy at the actual price may be able to continue minting
because stale prices are in use or vice versa.

Recommend following chainlink's example code to set up checks for the
sequencer.

[L-02] Use of a general staleness time is not
advisable

Staleness is checked while minting by ensuring that the last update time is not
more than a day. However, not all tokens have a 1-day stale period. Some are
as short as one hour. The implementation will allow stale prices to be accepted
for these tokens.

if (checkStaleness) {
 if (updatedAt < block.timestamp - 1 days) {
 revert StaleOracle();
 }
 }

Consider using a mapping that would record the heartbeat parameter of each
token to determine the stale period.

9

https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-code

[L-03] Withdrawal may sometimes fail if fee
taken is high enough

When users withdraw, a fee is first taken:

function withdraw(uint96 pocketId, uint256 amount, address to) external {
 // ...
>> _takeFee(pocket, msg.sender, pocketId);
>> shares = pocket.withdraw(msg.sender, amount, to);
 }

As can be seen, _takeFee withdraws the interest from the user's pocket.

function _takeFee(IPocket pocket, address user, uint96 pocketId) internal {
//...
 pocket.withdraw(user, interest, feeRecipient_);
//...

The withdrawn interest then reduces the total number of shares that the user
has.

function withdraw(
 addressuser,
 uint256amountUnderlying,
 addressrecipient
) external onlyVault returns (uint256 shares
///...
 $.sharesOf[user] -= shares;
 $.totalShares -= shares;
//...

After this process, the amount entered in by the user is now attempted to be
withdrawn.

function withdraw(uint96 pocketId, uint256 amount, address to) external {
 // ...
 shares = pocket.withdraw(msg.sender, amount, to);
 }

If the fee is high enough, the subsequent shares calculated user from the user's
inputted amount will now be more than the user's shareOf which has now
been reduced by the taken fee which the cause the withdrawal to fail.

To prove this, we add the test below to Vault.t.sol and run it with forge test -
-mt test_mayNotBeAbleToWithdraw -vvv

10

function test_mayNotBeAbleToWithdraw(uint32 timestamp) public {
 address user = makeAddr("user");
 uint256 amount = 100 ether;
 deposit(user, amount);
 vm.prank(user);
 vault.mint(pocketId, amount * 1e10 / 10);
 timestamp = uint32(bound(timestamp, block.timestamp + 1, type
 (uint32).max));
 vm.warp(timestamp);
 uint256 outstandingInterest = vault.outstandingInterestOf
 (user, pocketId);
 assertGt(outstandingInterest, 0);
 vm.prank(user);
 vault.withdraw(pocketId, 90 ether, user);

It should fail with the error below.

│ │ │ ├─ [558] MockCollateral::balanceOf
 (BasePocket: [0x1d1499e622D69689cdf9004d05Ec547d650Ff211]) [staticcall]
 │ │ │ │ └─ ← [Return] 86381365946854388636 [8.638e19]
 │ │ │ └─ ← [Revert] InsufficientFunds()
 │ │ └─ ← [Revert] InsufficientFunds()
 │ └─ ← [Revert] InsufficientFunds()
 └─ ← [Revert] InsufficientFunds()

Recommend withdrawing the amount minus the fee taken from the user
instead.

[L-04] Users can entirely skip paying fees if
there is no feeRecipient

_takeFee doesn't take a fee if the user's interest is 0 or if there's no fee
recipient. And, from the updateFeeRecipient , we can see that the
feeRecipient_ can be set to address(0) for some reason.

//...
 if (interest != 0 && feeRecipient_ != address(0)) {
 $.mintData.resetInterestOf(_toMintId(user, pocketId));
 pocket.withdraw(user, interest, feeRecipient_);
 emit FeeCollected(user, pocketId, feeRecipient_, interest);
 }
 }

During the period when there's no feeRecipient_ , users can successfully
bypass paying fees by choosing this time to withdraw all of their tokens. The
withdrawal will go through successfully without any fee charged. If the user
wants to reinteract with the protocol, he can just do so with a new address.

11

Copy and add the test below to Vault.t.sol, and run it. We can see that the 100
ether deposited by the user is fully withdrawn, without regard for the fee
accumulated during the period.

function test_userMayPayNoFees(uint32 timestamp) public {
 address user = makeAddr("user");
 uint256 amount = 100 ether;
 uint256 mintAmount = amount * 1e10 / 10;
 uint256 burnAmount = mintAmount;
 deposit(user, amount);
 vm.prank(user);
 vault.mint(pocketId, mintAmount);
 timestamp = uint32(bound(timestamp, block.timestamp + 10000, type
 (uint32).max));
 vm.warp(timestamp);
 vm.prank(user);
 vault.burn(pocketId, burnAmount);
 // We set fee recipeint to 0
 vault.updateFeeRecipient(address(0));
 uint256 outstandingInterest = vault.outstandingInterestOf
 (user, pocketId);
 assertGt(outstandingInterest, 0);
 vm.prank(user);
 //User can safely withdraw all of his token
 vault.withdraw(pocketId, 100 ether, user);
 }

I'd recommend either preventing withdrawals while there's no fee recipient or
withdrawing the amount minus the expected fee to the user. The fee can then
be taken later when the recipient is set.

[L-05] Full liquidation can be drawn out or
temporarily prevented

liquidate reverts if the liquidator's burnAmount is more than the user's
mintAmount . As a result, full liquidation can be made difficult by the user
burning a small amount of his TCAPV2, which is enough to reduce his
mintAmount but may not be enough to raise his health factor. This can prove to
be frustrating for liquidators, especially in cases where full liquidation is more
profitable than partial.

Add the test below to Vault.t.sol and run it. It shows that a user can cause
liquidation to fail by burning 1 wei of his TCAPV2 without actually making
his loan any healthier.

12

function test_frontrunLiquidation(address user, uint256 amount) public {
 vm.assume(user != address(0) && user != address(vaultProxyAdmin));
 uint256 depositAmount = deposit(user, amount, 1, 1e28);

 vm.startPrank(user);
 uint256 mintAmount = bound(amount, 1, depositAmount * 1e10);
 vault.mint(pocketId, mintAmount);
 vm.stopPrank();

 uint256 collateralValue = vault.collateralValueOfUser(user, pocketId);
 uint256 mintValue = vault.mintedValueOf(mintAmount);
 uint256 multiplier = mintValue * 10_000 / (collateralValue);
 vm.assume(multiplier > 1);
 feed.setMultiplier(multiplier - 1);

 vm.startPrank(user);
 vault.burn(pocketId, 1);
 vm.stopPrank();

 //We attempt to mint 1 wei to show that user's loan is still not healthy
 vm.expectRevert();
 vm.startPrank(user);
 vault.mint(pocketId, 1);
 vm.stopPrank();

 tCAPV2.mint(address(this), mintAmount);
 vault.liquidate(user, pocketId, mintAmount);
 }

The test should fail with the error code 10 which is equivalent to
INVALID_BURN_AMOUNT

│ │ │ └─ ← [Return] 9584648100537527642735121263 [9.584e27]
 │ │ └─ ← [Revert] InvalidValue(10)
 │ └─ ← [Revert] InvalidValue(10)
 └─ ← [Revert] InvalidValue(10)

Recommend not reverting if burnAmount > mintAmount , rather set
burnAmount to mintAmount instead.

// ...
 uint256 mintAmount = mintedAmountOf(user, pocketId);
- if (burnAmount > mintAmount) revert InvalidValue
- (IVault.ErrorCode.INVALID_BURN_AMOUNT);
+ if (burnAmount > mintAmount) {
+ burnAmount = mintAmount;
+ }
 uint256 tcapPrice = TCAPV2.latestPrice();
// ...

[L-06] Users that mint zero shares will lose
their funds

13

When a user deposit their funds, the following function will be called:

function registerDeposit(
 addressuser,
 uint256amountUnderlying
) external onlyVault returns (uint256 shares
 uint256 amountOverlying = _onDeposit(amountUnderlying);
 uint256 totalShares_ = totalShares();
 if (totalShares_ > 0) {
 shares = (totalShares_ * amountOverlying) /
 (OVERLYING_TOKEN.balanceOf(address(this)) - amountOverlying);
 } else {
 shares = amountOverlying * Constants.DECIMAL_OFFSET;
 }
 BasePocketStorage storage $ = _getBasePocketStorage();
 $.totalShares += shares;
 $.sharesOf[user] += shares;
 // @audit should not happen, prevent overflow when calculating balance
 assert($.sharesOf[user] < 1e41);
 emit Deposit(user, amountUnderlying, amountOverlying, shares);
 }

If totalShares_ > 0 and the denominator is higher than the numerator, the
user will deposit their funds but they will receive zero shares in return, so
consider reverting when shares == 0 .

[L-07] Liquidators might get a reward that
is less than expected

In Vault , the liquidationReward depends on the current price of TCAP. A
liquidator will burn burnAmount of their tokens, but if the price of TCAP is
currently volatile, they might get fewer rewards than expected.

Consider adding a minRewardAmount for a liquidation, and revert the
transaction if the reward is less than this value.

[L-08] Excessive loans to trigger a
liquidation

In Vault , users can get a loan up to the liquidation threshold:

if (_healthFactor(user, pocketId, checkStaleness) < liquidationParams
 ().threshold) revert LoanNotHealthy();

14

Liquidation can be triggered if the health factor is at least equal to the previous
threshold:

function liquidate(
 addressuser,
 uint96pocketId,
 uint256burnAmount
) external returns (uint256 liquidationReward
 ...
 IVault.LiquidationParams memory liquidation = liquidationParams();
 uint256 healthFactor_ = LiquidationLib.healthFactor(
 mintAmount,
 tcapPrice,
 collateralAmount,
 collateralPrice,
 COLLATERAL_DECIMALS
);
-> if (healthFactor_ >= liquidation.threshold) revert LoanHealthy();
 ...
 }

This is an issue because the difference is only 1 wei, making it highly likely
that a maximized loan will be liquidated in the next block.

Consider reducing the threshold at which is possible to increase the loan
amount to avoid this scenario.

[L-09] Pocket inflation attack
To kick-start the attack, the malicious user will often usually mint the smallest
possible amount of shares (e.g., 1 wei) and then donate significant assets to the
vault to inflate the number of assets per share. Subsequently, it will cause a
rounding error when other users deposit. link

In the case of Pockets, the attacker will have to donate OVERLYING_TOKEN .

15

https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

function registerDeposit(
 addressuser,
 uint256amountUnderlying
) external onlyVault returns (uint256 shares
 uint256 amountOverlying = _onDeposit(amountUnderlying);
 uint256 totalShares_ = totalShares();
 if (totalShares_ > 0) {
 shares = (totalShares_ * amountOverlying) /
 (OVERLYING_TOKEN.balanceOf(address(this)) - amountOverlying);
 } else {
 shares = amountOverlying * Constants.DECIMAL_OFFSET;
 }
 BasePocketStorage storage $ = _getBasePocketStorage();
 $.totalShares += shares;
 $.sharesOf[user] += shares;
 // @audit should not happen, prevent overflow when calculating balance
 assert($.sharesOf[user] < 1e41);
 emit Deposit(user, amountUnderlying, amountOverlying, shares);
 }

The first depositor will receive shares = amountOverlying *
Constants.DECIMAL_OFFSET . But this protection is not enough as this depositor
still can withdraw collateral to leave only 1 wei of shares.

Test to reproduce the attack: Gist

Consider using virtual shares as explained in the link above.

[L-10] Loans that use an AAVE pocket may
become non-liquidatable

In AaveV3Pocket , the function will revert on withdrawal when the supply
available on Aave is not sufficient to cover the entire amount:

function _onWithdraw(
 uint256amountOverlying,
 addressrecipient
) internal override returns (uint256 amountUnderlying
 if (amountOverlying == 0) return 0;
 uint256 amountWithdrawn = POOL.withdraw(address
 (UNDERLYING_TOKEN), amountOverlying, recipient);
 // https://github.com/code-423n4/2022-06-connext-findings/issues/181
-> assert(amountWithdrawn == amountOverlying);
 return amountOverlying;
 }

This can occur during a liquidity shortage on Aave, and it's meant to be a
protection for users when they withdraw their collateral.

16

https://gist.github.com/ZanyBonzy/52b8a74582829f2dbe245fec2b29eeb7

The issue is that this may also happen during a liquidation, as it would cause a
revert. In Vault.liquidate , _takeFee will withdraw the accrued interest, and
this may block the transaction, resulting in the accumulation of bad debt for
the protocol:

function _takeFee(IPocket pocket, address user, uint96 pocketId) internal {
 uint256 interest = outstandingInterestOf(user, pocketId);
 uint256 collateral = _balanceOf(user, pocketId);
 if (interest > collateral) interest = collateral;
 VaultStorage storage $ = _getVaultStorage();
 address feeRecipient_ = $.feeRecipient;
 if (interest != 0 && feeRecipient_ != address(0)) {
 $.mintData.resetInterestOf(_toMintId(user, pocketId));
-> pocket.withdraw(user, interest, feeRecipient_);
 emit FeeCollected(user, pocketId, feeRecipient_, interest);
 }
 }

As the conversion between underlying and overlying is always 1:1, sending
users the overlying token would guarantee successful liquidations always.

The alternative option:

In AaveV3Pocket , consider avoiding a revert when amountOverlying is not
equal to amountWithdrawn . Instead, consider using a pull approach: store the
difference and ensure that the recipient can withdraw it.

17

