
CryptexSecurity Review

Cantina Managed review by:
Patrickd, Security Researcher
Cccz, Security Researcher

September 27, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Cryptex architecture 4
4 Findings 64.1 High Risk . 64.1.1 Calculating liquidationReward without considering collateral decimals 64.1.2 Depositing to Pocket is vulnerable to inflation attacks 64.1.3 Calculating interest without considering the collateral decimals 74.1.4 Liquidated person's debts are not reduced in liquidation 84.2 Medium Risk . 94.2.1 Incorrect calculation of interests when taking fee . 94.3 Low Risk . 104.3.1 Accumulated fee may be lost . 104.3.2 Lack of integration with Aave's reward distribution . 114.3.3 Harden Chainlink Price Feed integration . 114.3.4 Correct overlying aToken can be determined automatically 134.3.5 Use of deprecated Aave V3 Pool deposit function . 134.4 Gas Optimization . 144.4.1 Public constants needlessly pollute function selection 144.4.2 Various small gas optimizations . 144.5 Informational . 174.5.1 Create Token Integration Checklist . 174.5.2 Upgradeability: Automate verification of storage changes 184.5.3 Various small improvements and other nitpicks . 194.5.4 Review of TokenExchangeSetIssuer . 204.5.5 Deposit storage struct has unused members . 214.5.6 Use safeTransfer() instead of transfer() in BasePocket 21

1

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary
Cryptex brings together a comprehensive suite of DeFi services into one intuitive platform, offering aseamless and powerful trading experience.
From Sep 16th to Sep 24th the Cantina team conducted a review of cryptex-monorepo on commit hash459e49fd. The team identified a total of 18 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 4
• Medium Risk: 1
• Low Risk: 5
• Gas Optimizations: 2
• Informational: 6

3

https://github.com/cantina-forks/cryptex-monorepo
https://github.com/cantina-forks/cryptex-monorepo/tree/459e49fddd1cdc0dbacdd2e84282ad9ad2171fa6/

3 Cryptex architecture

4

5

4 Findings
4.1 High Risk
4.1.1 Calculating liquidationReward without considering collateral decimals
Severity: High Risk
Context: LiquidationLib.sol#L17-L19
Description: In liquidation, the liquidationReward() function is used to calculate the liquidator's reward,and it will calculate the rewarded collateral amount based on the TCAP amount burned by the liquidator.
function liquidationReward(uint256 burnAmount, uint256 tcapPrice, uint256 collateralPrice, uint64

liquidationPenalty) internal pure returns (uint256) {↪→

return burnAmount * tcapPrice * (1e18 + liquidationPenalty) / collateralPrice / 1e18;

}

The problem here is that liquidationReward() doesn't consider the decimals of the collateral and TCAP,which results in the calculated liquidationReward being quite large when the collateral is a low decimalstoken such as USDC/USDT, thus giving the liquidator a larger reward.
Recommendation: Change to
- liquidationReward = LiquidationLib.liquidationReward(burnAmount, tcapPrice, collateralPrice,

liquidation.penalty);↪→

+ liquidationReward = LiquidationLib.liquidationReward(burnAmount, tcapPrice, collateralPrice,

liquidation.penalty, assetDecimals);↪→

// ...

- function liquidationReward(uint256 burnAmount, uint256 tcapPrice, uint256 collateralPrice, uint64

liquidationPenalty) internal pure returns (uint256) {↪→

- return burnAmount * tcapPrice * (1e18 + liquidationPenalty) / collateralPrice / 1e18;

+ function liquidationReward(uint256 burnAmount, uint256 tcapPrice, uint256 collateralPrice, uint64

liquidationPenalty, uint8 collateralDecimals) internal pure returns (uint256) {↪→

+ return burnAmount * tcapPrice * (1e18 + liquidationPenalty) * 10 ** collateralDecimals / collateralPrice

/ 1e18 / 10 ** 18;↪→

}

Cryptex: Fixed in PR 9.
Cantina Managed: Fixed.
4.1.2 Depositing to Pocket is vulnerable to inflation attacks
Severity: High Risk
Context: BasePocket.sol#L50
Description: When depositing to Pocket, a malicious user can manipulate pricePerShare by donating, sothat other users will lose due to rounding down when depositing. Consider the following scenario:
1. Alice deposits 1e18 wei collateral to Pocket.
2. Bob observes Alice's transaction, and frontruns Alice with the following action.
3. Bob deposits 1 wei collateral and mint 1 wei share.
4. Bob transfers 1e18 wei collateral to Pocket, now total assets are 1e18 + 1 wei, and total shares are1 wei.
5. Alice's transaction is executed, shares = 1 * 1e18 / (1e18 + 1), rounding down to 0, Alice receives0 share.
6. Bob withdraws 1 wei share and receives 2e18+1 wei collateral.

Recommendation: According to OZ's explanation of ERC-4626 inflation attacks, there are several recom-mendations to mitigate inflation attack, such as:
1. The use of an ERC4626 Router does not resolve the issue on its own, as it relies on users to performslippage control during mint/deposit to prevent losses.

6

https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/lib/LiquidationLib.sol#L17-L19
https://github.com/cryptexfinance/tcapv2.0/pull/9
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/BasePocket.sol#L50
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

function deposit(

IERC4626 vault,

address to,

uint256 amount,

uint256 minSharesOut

) public payable virtual override returns (uint256 sharesOut) {

if ((sharesOut = vault.deposit(amount, to)) < minSharesOut) { // @audit: slippage control here

revert MinSharesError();

}

}

2. Tracking assets internally instead of relying on current token balances. In other words, this requiresthe protocol to not use balanceOf() to track assets, which does not apply to rebase tokens, such asaToken.
3. Dead Shares (like Uniswap V2).

function mint(address to) external lock returns (uint liquidity) {

// ...

uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update

in _mintFee↪→

if (_totalSupply == 0) {

liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);

_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens

Afterwemint the initial 1000 shares to address(0), when the attackermakes a donation, the donatedassets will increase the value of these 1000 dead shares, causing the attacker to lose. Consider thatthe attacker mints 1001 shares, 1000 shares are minted to address(0), and 1 share is minted to theattacker. After that, the attacker donates 1e18 collateral. The attacker immediately loses 1000/1001
* 1e18 collateral.

4. Virtual Shares and Decimals Offset.
This is the method used by OZ ERC4626 and is proven mathematically within OpenZeppelin's doc-umentation. However, this method may significantly increase totalShares, so the assert() state-ment in BasePocket.registerDeposit()may need to be changed if it is used.

assert($.sharesOf[user] < 1e38);

Cryptex: Fixed in commit 18949206.
Cantina Managed: Fixed.
4.1.3 Calculating interest without considering the collateral decimals
Severity: High Risk
Context: Vault.sol#L289-L293
Description: The outstandingInterestOf() function converts the interest from the TCAP amount to thecollateral amount. However, it does not consider TCAP and collateral decimals when converting, whichresults in a rather large interest calculated when using low-decimal tokens such as USDC/USDT as collat-eral.
function outstandingInterestOf(address user, uint96 pocketId) public view returns (uint256) {

MintData storage $ = _getVaultStorage().mintData;

uint256 interestAmount = $.interestOf(_toMintId(user, pocketId));

return interestAmount * TCAPV2.latestPrice() / latestPrice();

}

Proof of concept: The proof of concept shows that when collateral is 6 decimals, outstandingInterest()returns 0.1e18 (should be 0.1e6), and collateralOf will underflow:

7

https://docs.openzeppelin.com/contracts/4.x/erc4626#inflation-attack
https://docs.openzeppelin.com/contracts/4.x/erc4626#inflation-attack
https://github.com/cryptexfinance/tcapv2.0/commit/18949206bfb56b47a5b0bf555e531778f4a1a572
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L289-L293

function test_poc() public {

address user = makeAddr("user");

uint256 amount = 100e6;

deposit(user, amount);

vm.prank(user);

vault.mint(pocketId, 10e18);

uint timestamp = 365 days;

vm.warp(timestamp);

uint256 outstandingInterest = vault.outstandingInterestOf(user, pocketId);

console.logUint(outstandingInterest); // 0.1e18

console.logUint(vault.collateralOf(user, pocketId)); // [FAIL. Reason: panic: arithmetic underflow or

overflow (0x11)]↪→

}

Recommendation: Considering collateral and TCAP decimals in outstandingInterestOf()

function outstandingInterestOf(address user, uint96 pocketId) public view returns (uint256) {

MintData storage $ = _getVaultStorage().mintData;

uint256 interestAmount = $.interestOf(_toMintId(user, pocketId));

+ uint256 assetDecimals = _getVaultStorage().oracle.assetDecimals();

+ return interestAmount * TCAPV2.latestPrice() * 10 ** assetDecimals / latestPrice() / 10 ** 18;

- return interestAmount * TCAPV2.latestPrice() / latestPrice();

}

Cryptex: Fixed in PR 9.
Cantina Managed: Fixed.
4.1.4 Liquidated person's debts are not reduced in liquidation
Severity: High Risk
Context: Vault.sol#L245-L246
Description: After liquidation, the liquidator's TCAPV2 is burned to repay the liquidated person's debts.However, during liquidation, the modifyPosition() function is not called to update the position of the liq-uidated person to reduce the debt, which would result in the liquidated person being able to be liquidatedrepeatedly until the collateral goes to 0:
pocket.withdraw(user, liquidationReward, msg.sender);

TCAPV2.burn(msg.sender, burnAmount);

emit Liquidated(msg.sender, user, pocketId, liquidationReward, burnAmount);

Proof of concept: The proof of concept shows that after liquidation, the collateral is 0 and the debtremains unchanged:

8

https://github.com/cryptexfinance/tcapv2.0/pull/9
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L245-L246

function test_POC() public {

address user = address(0xb0b);

uint amount = 1e18;

vm.assume(user != address(0) && user != address(vaultProxyAdmin));

uint256 depositAmount = deposit(user, amount);

vm.assume(depositAmount > 0);

vm.prank(user);

uint256 mintAmount = bound(amount, 1, depositAmount);

vault.mint(pocketId, mintAmount);

uint256 collateralValue = vault.collateralValueOfUser(user, pocketId);

console.logUint(collateralValue); // 1000e18

uint256 mintValue = vault.mintedValueOf(mintAmount);

console.logUint(mintValue); // 1000e18

uint256 multiplier = mintValue * 10_000 / (collateralValue);

vm.assume(multiplier > 1);

feed.setMultiplier(multiplier - 1);

tCAPV2.mint(address(this), mintAmount);

vm.expectEmit(true, true, true, true);

emit IVault.Liquidated(address(this), user, pocketId, depositAmount, mintAmount);

console.logUint(vault.mintedValueOfUser(user,pocketId)); // 1000e18

collateralValue = vault.collateralValueOfUser(user, pocketId);

console.logUint(collateralValue); // 99.9e18

vault.liquidate(user, pocketId, mintAmount);

collateralValue = vault.collateralValueOfUser(user, pocketId);

console.logUint(collateralValue); // 0

console.logUint(vault.mintedValueOfUser(user,pocketId)); // 1000e18

}

Recommendation: Change to
+ $.modifyPosition(_toMintId(user, pocketId), -burnAmount.toInt256());

pocket.withdraw(user, liquidationReward, msg.sender);

TCAPV2.burn(msg.sender, burnAmount);

emit Liquidated(msg.sender, user, pocketId, liquidationReward, burnAmount);

Cryptex: Fixed in commits 50c7925a and 441a8137.
Cantina Managed: Fixed.
4.2 Medium Risk
4.2.1 Incorrect calculation of interests when taking fee
Severity: Medium Risk
Context: Vault.sol#L331-L333
Description: In _takeFee(), if the interest is greater than the collateral, the collateral is taken as interest.
function _takeFee(IPocket pocket, address user, uint96 pocketId) internal {

uint256 interest = outstandingInterestOf(user, pocketId);

uint256 collateral = collateralOf(user, pocketId);

if (interest > collateral) interest = collateral;

The problem here is that the collateralOf() function already considers the interest, if the interest is greaterthan the balance, collateralOf() will underflow. And even if the balance is enough to cover the interest, theinterest will be lower.
function collateralOf(address user, uint96 pocketId) public view returns (uint256) {

IPocket pocket = _getVaultStorage().pockets[pocketId].pocket;

return pocket.balanceOf(user) - outstandingInterestOf(user, pocketId);

}

For example, if the user has 15 USD balance and 10 USD interest, in _takeFee(), collateralOf() is 15 -

10 = 5 USD, which means that only 5 USD interest will be charged, even if the 15 USD balance is enoughto pay 10 USD interest.
Recommendation: Change to

9

https://github.com/cryptexfinance/tcapv2.0/commit/50c7925a6c3f309de1ec1ac1c16e55792a14efef
https://github.com/cryptexfinance/tcapv2.0/commit/441a8137e18067ae8932813671e57e30203c86fb
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L331-L333

function _takeFee(IPocket pocket, address user, uint96 pocketId) internal {

uint256 interest = outstandingInterestOf(user, pocketId);

+ uint256 collateral = pocket.balanceOf(user);

- uint256 collateral = collateralOf(user, pocketId);

if (interest > collateral) interest = collateral;

VaultStorage storage $ = _getVaultStorage();

address feeRecipient_ = $.feeRecipient;

if (interest != 0 && feeRecipient_ != address(0)) {

pocket.withdraw(user, interest, feeRecipient_);

}

$.mintData.resetInterestOf(_toMintId(user, pocketId));

Also, since _takeFee() will only be called in withdraw()/liquidate(), which prevents the fee from beingcollected in time, it is recommended to wrap _takeFee() with a public function so that anyone can call itto collect the fee.
Cryptex: Fixed in commit d1799f6e.
Cantina Managed: Fixed.
4.3 Low Risk
4.3.1 Accumulated fee may be lost
Severity: Low Risk
Context: Vault.sol#L336-L339
Description: In _takeFee(), when interest is 0, interset is reset directly.
function _takeFee(IPocket pocket, address user, uint96 pocketId) internal {

uint256 interest = outstandingInterestOf(user, pocketId);

uint256 collateral = collateralOf(user, pocketId);

if (interest > collateral) interest = collateral;

VaultStorage storage $ = _getVaultStorage();

address feeRecipient_ = $.feeRecipient;

if (interest != 0 && feeRecipient_ != address(0)) {

pocket.withdraw(user, interest, feeRecipient_);

}

$.mintData.resetInterestOf(_toMintId(user, pocketId));

}

Considering the fee is 5%, according to the calculation, the accumulated interest per second is
mintAmount * feeData.fee /(365 days * Constants.MAX_FEE) = mintAmount * 0.05 / 365 days =

mintAmount / 630720000, that is, when mintAmount < 630720000 wei, the accumulated interest persecond will round down to 0. If the user calls _takeFee() once per second, the interest paid will alwaysbe 0.
function interestOf(Vault.MintData storage $, uint256 mintId) internal view returns (uint256 interest) {

return $.deposits[mintId].accruedInterest + outstandingInterest($, feeIndex($), mintId);

}

// ...

function feeIndex(Vault.MintData storage $) internal view returns (uint256) {

return $.feeData.index + (block.timestamp - $.feeData.lastUpdated) * $.feeData.fee * MULTIPLIER() / (365

days * Constants.MAX_FEE);↪→

}

// ...

function outstandingInterest(Vault.MintData storage $, uint256 index, uint256 mintId) private view returns

(uint256 interest) {↪→

uint256 userIndex = $.deposits[mintId].feeIndex;

return $.deposits[mintId].mintAmount * (index - userIndex) / MULTIPLIER();

}

In addition, the interest will be reset when feeRecipient_ is address(0).
Recommendation: Change to

10

https://github.com/cryptexfinance/tcapv2.0/commit/d1799f6e22fa92e7e3c67ea71efb0e16a77e3413
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L336-L339

if (interest != 0 && feeRecipient_ != address(0)) {

pocket.withdraw(user, interest, feeRecipient_);

+ $.mintData.resetInterestOf(_toMintId(user, pocketId));

}

- $.mintData.resetInterestOf(_toMintId(user, pocketId));

Cryptex: Fixed in commit d1799f6e.
Cantina Managed: Fixed.
4.3.2 Lack of integration with Aave's reward distribution
Severity: Low Risk
Context: AaveV3Pocket.sol#L19-L30
Description: Aave v3 has an integrated Rewards Distribution System to incentivise the supply of liquidity,where deposited underlying tokens may yield rewards that can be obtained via the RewardControllercontract.
The AaveV3Pocket currently has no way to access any accumulated rewards to distribute them fairlyamong its users.
Recommendation: Consider integrating the AaveV3Pocket contract with Aave's RewardController.
Cryptex: Acknowledged. This is acceptable as-is for themoment. Should the need arise, rewards could betheoretically retrieved and distributed at a later point through an upgrade of the pocket contract, shouldthose rewards turn out to be meaningful.
Cantina Managed: Acknowledged.
4.3.3 Harden Chainlink Price Feed integration
Severity: Low Risk
Context: AggregatedChainlinkOracle.sol#L18-L21
Description: The AggregatedChainlinkOracle has no validation of the returned data at themoment, asidefrom a simple sanity check on the price being non-zero.
function latestPrice() public view virtual override returns (uint256) {

(, int256 answer,,,) = feed.latestRoundData();

// @audit in case of a stale oracle do not revert because it would prevent users from withdrawing

assert(answer > 0);

// @audit feed decimals cannot exceed 18

uint256 adjustedDecimalsAnswer = uint256(answer) * 10 ** (18 - feedDecimals);

return adjustedDecimalsAnswer;

}

The Cryptex Team wishes for users to be able to withdraw any free funds at any time, and it also prefershaving functions that improve protocol health, such as the burning of debt and liquidations, to be availableat all times. Adding checks for the freshness of price informationmay impede these intentions by causingthese actions to revert.
Officially Chainlink "encourages" consumers to check whether received data is fresh by inspecting update-
dAt (or alternatively answeredInRound, but that has been depricated as answers no longer take multiplerounds to be computed). In practice, many protocols omit such checks completely, as done here. Othersimplement awide variety of staleness threshold checks on updatedAt: Some use constant thresholds withvalues such as 5m, 90m, 4h, and even 24h. Some have the threshold configurable via storage.
There is no obvious consensus on whether and how to check for feed price "freshness". There's also avariety of sanity checks that projects implement similar to the assert(answer > 0); done here:

• assert(roundId > 0).
• assert(updatedAt > 0).
• assert(updatedAt <= block.timestamp).

11

https://github.com/cryptexfinance/tcapv2.0/commit/d1799f6e22fa92e7e3c67ea71efb0e16a77e3413
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L19-L30
https://docs.aave.com/developers/whats-new/multiple-rewards-and-claim
https://docs.aave.com/developers/periphery-contracts/rewardscontroller
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/AaveV3Pocket.sol
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/oracle/AggregatedChainlinkOracle.sol#L18-L21
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/oracle/AggregatedChainlinkOracle.sol

That it's indeed safe to ignore startedAt and answeredInRound can be verified by looking at Chainlink'scontracts that simply return the values for updatedAt and roundId respectively in their place.
While there's arguably little harm to implementing the mentioned sanity checks, threshold checks on
updatedAt or the price need to be decided based on the project's nature and risks.
Risk Analysis: As TCAP is a synthetic asset, there's arguably little immediate risk with its oracle pricebeing outdated - it remains at the target price that its incentives attempt to peg to. Collateral prices beingstale, on the other hand, could lead to "arbitrage" opportunities: Say the collateral is ETH and the pricereported by the oracle remains stale at a high price while themarket price of ETH has actually significantlydecreased. Buying ETH from an AMM, depositing it into a Vault, minting TCAP, immediately selling it forETH again, repeat - things like this may become profitable. The older Cryptex proposal CIP-14 may serveas an example precedent for such opportunities being exploited.
Aside from possible risks from prices being stale, there are risks associated with prices being updatedafter having been stale for a while. While a stale oracle target price for TCAP might be harmless, a sud-den increase in TCAP price once the total market cap oracle is being updated again might surprise manyborrowers with sudden liquidations. On the flip side, borrowers followingmarket price movements atten-tively may use the time before the price feeds are updated as an opportunity to jump ship before realityhits chain, while less sophisticated borrowers will suffer.
On L2s such situationsmay end up being especially problematic: Many L2s, like this protocol's target chainArbitrum, allow the submission of transaction even while the sequencer is down. It's not far fetched toassume that liquidators tend to be more technically sophisticated than the average borrower. It's likelythat liquidators will be able to exploit this fact to liquidate borrowers who weren't able to access theprotocol during the sequencer downtime to ensure sufficient collateral. Some protocols such as Aavehave explicitly implemented "borrower grace periods" during which neither liquidations nor further bor-rowing is possible. These grace periods are automatically triggered by the contracts checking Chainlink'sL2 Sequencer Uptime Feeds and intend to give borrowers some time to secure their positions once thesequencer is back online.
Recommendations:

• Add the above mentioned sanity checks.
• Implement monitoring for Chainlink pricefeeds and Arbitrum sequencer to be aware of any irregu-larities.
• Implement monitoring to detect any "arbitrage opportunities" and alert the team of any strong de-viations between oracle and market prices.
• Consider implementing grace periods for borrowers after a sequencer outage.
• Encourage borrowers to subscribe to communication channels that will notify them if positions maybe in danger due to oracle or sequencer outages.
• Document and publish possible ways to respond to such incidents for the governance communityto consult.
• Consider implementing circuit breakers at least for extreme cases of price staleness or deviations.In the rare events that these trigger, or are about to trigger, a governance proposal may deployadjusted oracle contracts with adjusted parameters depending on the situation.
• Alternatively to circuit breakers that pause the protocol entirely, consider at least implementing"speed bumps" which, when triggered during time of price staleness, price de-peg, or volatility, willprohibit the use of flash loans. The abovementioned "arbitrage opportunities" often rely on the useof flash loans to immediately deposit and mint within a single transaction. Active speed bump logicwould prevent the use of flash loans by forcing the block number between the call of the depositand the call of the mint function to differ.
• In case price checks will be restricted to certain interactions with the protocol, it's recommended toat least add them to the mint function, preventing the creation of new debt during unsafe periods.Not disabling liquidations may be in favor of the protocol, but it can cause borrowers to be unfairlyliquidated, especially during times where only either of the oracles (collateral price or TCAP targetprice) becomes stale. Allowing the withdrawal of "free" collateral while price oracles are stale mayat worst allow the protocol to temporarily have bad debt once oracles are back up. With the CryptexTeam's desire to allowwithdrawals at any time in favor of the users, the governance should considerpreparing emergency funds to buy such bad debt before it can negatively impact the TCAP price peg.

12

https://www.codeslaw.app/contracts/ethereum/0x780f1bD91a5a22Ede36d4B2b2c0EcCB9b1726a28?file=AccessControlledOffchainAggregator.sol&start=1779&end=1814
https://www.codeslaw.app/contracts/ethereum/0x780f1bD91a5a22Ede36d4B2b2c0EcCB9b1726a28?file=AccessControlledOffchainAggregator.sol&start=1779&end=1814
https://forum.cryptex.finance/t/cip-14-increase-hard-mode-vault-liquidation-ratio-to-125/324
https://docs.chain.link/data-feeds/l2-sequencer-feeds

Cryptex: Fixed in commit 3209c762.
Cantina Managed: Fixed. The Cryptex Team addressed this finding by adding a staleness check that isonly executed when attempting to mint TCAP (i.e. when creating new debt).
4.3.4 Correct overlying aToken can be determined automatically
Severity: Low Risk
Context: AaveV3Pocket.sol#L14-L16
Description: When initializing an AaveV3Pocket contract, the contract receives

• underlyingToken_: The address of the underlying ERC20 token, e.g. DAI.
• overlyingToken_: The address of the overlying ERC20 aToken belonging to Aave, e.g. aDAI.
• aavePool: The address of the Aave Pool to interact with.

Situations like these allow for mistakes to happen where the underlying and overlying tokens are actuallyincompatible.
Recommendation: It's possible to automatically determine the correct aToken address during the initial-ization of AaveV3Pocket:
- constructor(address vault_, address underlyingToken_, address overlyingToken_, address aavePool)

BasePocket(vault_, underlyingToken_, overlyingToken_) {↪→

+ constructor(address vault_, address underlyingToken_, address aavePool)

+ BasePocket(vault_, underlyingToken_, IPool(aavePool).getReserveData(underlyingToken_).aTokenAddress) {

POOL = IPool(aavePool);

+ require(address(UNDERLYING_TOKEN) != address(0));

}

Cryptex: Fixed in PR 13.
Cantina Managed: The Cryptex Team has addressed this issue within the attached pull request.
4.3.5 Use of deprecated Aave V3 Pool deposit function
Severity: Low Risk
Context: AaveV3Pocket.sol#L19-L21
Description: The AaveV3Pocket contract integrates with Aave V3 in order to allow debtors, willing to takeon more risk, to make use of their collateral more efficiently.
To interact with this party, the protocol makes use of the IPool interface with contains the followingdocumentation regarding the use of its deposit() function as done within AaveV3Pocket:
/**

* @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.

* - E.g. User supplies 100 USDC and gets in return 100 aUSDC

* @dev Deprecated: Use the `supply` function instead

* [...]

*/

function deposit(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;

Recommendation: Replace the call to the deprecated deposit() function with a call to the equivalent
supply() function instead:
- POOL.deposit(address(UNDERLYING_TOKEN), amountUnderlying, address(this), 0);

+ POOL.supply(address(UNDERLYING_TOKEN), amountUnderlying, address(this), 0);

Cryptex: Fixed in PR 13.
Cantina Managed: The Cryptex Team has addressed this issue within the attached pull request.

13

https://github.com/cryptexfinance/tcapv2.0/commit/3209c7627fcb837b38a17ec934a2c71d23b129c2
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L14-L16
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/AaveV3Pocket.sol#L14
https://github.com/cryptexfinance/tcapv2.0/pull/13
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L19-L21
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/AaveV3Pocket.sol
https://github.com/aave/aave-v3-core/blob/b74526a7bc67a3a117a1963fc871b3eb8cea8435/contracts/interfaces/IPool.sol#L727-L736
https://github.com/cryptexfinance/tcapv2.0/pull/13

4.4 Gas Optimization
4.4.1 Public constants needlessly pollute function selection
Severity: Gas Optimization
Context: DeployTCAP.s.sol#L36, TCAPTargetOracle.sol#L13, TCAPV2.sol#L21-L24, Vault.sol#L62-L65
Description: At the moment the Vault and TCAPV2 contracts expose public getter functions for constantvariable values.
bytes32 public constant POCKET_SETTER_ROLE = keccak256("POCKET_SETTER_ROLE");

bytes32 public constant FEE_SETTER_ROLE = keccak256("FEE_SETTER_ROLE");

bytes32 public constant ORACLE_SETTER_ROLE = keccak256("ORACLE_SETTER_ROLE");

bytes32 public constant LIQUIDATION_SETTER_ROLE = keccak256("LIQUIDATION_SETTER_ROLE");

bytes32 public constant VAULT_ROLE = keccak256("VAULT_ROLE");

bytes32 public constant ORACLE_SETTER_ROLE = keccak256("ORACLE_SETTER_ROLE");

uint256 public constant DIVISOR = 1e10;

These values being constant, and therefore accessible within code without the need of a getter function,arguably pollutes the function selector logic with unnecessary branches.
Recommendation: Consider making the function selection more efficient by making these constant vari-ables internal such that they will no longer have a public getter function exposed.
Cryptex: Fixed in commit 892f192a.
Cantina Managed: Fixed.
4.4.2 Various small gas optimizations
Severity: Gas Optimization
Context: AaveV3Pocket.sol#L20, BasePocket.sol#L65, Multicall.sol#L15-L19, TCAPV2.sol#L57-L63,Vault.sol#L149, Vault.sol#L200
Description: The biggest gas inefficiencies are arguably due to the way the code is currently organized,especially around the fee/interest rate logic, causing a lot of gas being spent on redundant storage readsandwrites. The current structure provides great testability, butmakes significant gas optimizations ratherdifficult.
Although gas may not be the greatest concern with this project being primarily developed for layer 2chains, the following are recommendations of changes that require few code adjustments but offer someefficiency benefits.
Recommendations:

• Vault.sol: The liquidation() function currently computes the healthFactor_ as part of its businesslogic. This same computation is repeated when it goes on to call the tokensRequiredForTargetH-

ealthFactor() function twice.

14

https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/script/DeployTCAP.s.sol#L36
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/oracle/TCAPTargetOracle.sol#L13
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/TCAPV2.sol#L21-L24
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L62-L65
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/TCAPV2.sol
https://github.com/cryptexfinance/tcapv2.0/commit/892f192ab8446ad01f55afa64185c0e3b8ae299a
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L20
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/BasePocket.sol#L65
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/lib/Multicall.sol#L15-L19
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/TCAPV2.sol#L57-L63
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L149
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L200
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol#L200

/// @inheritdoc IVault

function liquidate(address user, uint96 pocketId, uint256 burnAmount) external returns (uint256

liquidationReward) {↪→

// ...

uint256 healthFactor_ = LiquidationLib.healthFactor(mintAmount, tcapPrice, collateralAmount,

collateralPrice, assetDecimals);↪→

if (healthFactor_ >= liquidation.threshold) revert LoanHealthy();

// ...

} else {

uint256 minBurnAmount = LiquidationLib.tokensRequiredForTargetHealthFactor(

liquidation.threshold + liquidation.minHealthFactor,

mintAmount,

tcapPrice,

collateralAmount,

collateralPrice,

liquidation.penalty,

assetDecimals

);

// ...

if (

burnAmount

> LiquidationLib.tokensRequiredForTargetHealthFactor(

liquidation.threshold + liquidation.maxHealthFactor,

mintAmount,

tcapPrice,

collateralAmount,

collateralPrice,

liquidation.penalty,

assetDecimals

)

) {

revert InvalidValue(IVault.ErrorCode.HEALTH_FACTOR_ABOVE_MAXIMUM);

}

}

function tokensRequiredForTargetHealthFactor(

// ...

) internal pure returns (uint256) {

uint256 currentHealthFactor = healthFactor(mintAmount, tcapPrice, collateralAmount,

collateralPrice, collateralDecimals);↪→

// ...

}

• AaveV3Pocket: During a deposit (_onDeposit()) Aave is given an allowance to have access exactlyto the amount of token being deposited. Consider changing the ‘approve() call to give an unlimitedallowance to make deposits more gas efficient.
+ function initialize() public override initializer {

+ UNDERLYING_TOKEN.approve(address(POOL), type(uint256).max);

+ }

/// @dev deposits underlying token into Aave v3, aTokens are deposited into this pocket

function _onDeposit(uint256 amountUnderlying) internal override returns (uint256 amountOverlying) {

- UNDERLYING_TOKEN.approve(address(POOL), amountUnderlying);

POOL.deposit(address(UNDERLYING_TOKEN), amountUnderlying, address(this), 0);

return amountUnderlying;

}

• Multicall.sol Mark inline assembly blocks asmemoy-safe (Since Solidity 0.8.13), ensuring proper com-piler optimization.
- assembly {

+ assembly ("memory-safe") {

• BasePocket.sol: Remove the redundant line 65, which loads the user's current balance but does notmake any use of ti.

15

https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/AaveV3Pocket.sol#L20
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/lib/Multicall.sol#L17-L19
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/BasePocket.sol#L65

function withdraw(address user, uint256 amountUnderlying, address recipient) external onlyVault

returns (uint256 shares) {↪→

if (amountUnderlying == type(uint256).max) {

- amountUnderlying = _balanceOf(user);

shares = sharesOf(user);

} else {

shares = amountUnderlying * totalShares() / _totalBalance();

}

• TCAPV2.sol: The TCAPv2 ERC-20 contract keeps track of how many tokens have been minted perVault. During minting, it's impossible for amounts to overflow for a Vault before they overflow thetotal supply value. During burning, it's impossible for a Vault to burnmore tokens than it minted dueto the explicit check for this. In both the minting and the burning functions, the addition and sub-traction may safely skip the overflow checks automatically added by the Solidity compiler. Considerwrapping these lines within an unchecked block.
function mint(address to, uint256 amount) external onlyRole(VAULT_ROLE) {

TCAPV2Storage storage $ = _getTCAPV2Storage();

+ unchecked {

$._mintedAmounts[msg.sender] += amount;

+ }

_mint(to, amount);

emit Minted(msg.sender, to, amount);

}

/// @inheritdoc ITCAPV2

function burn(address from, uint256 amount) external onlyRole(VAULT_ROLE) {

TCAPV2Storage storage $ = _getTCAPV2Storage();

if (amount > $._mintedAmounts[msg.sender]) revert BalanceExceeded(msg.sender);

_burn(from, amount);

+ unchecked {

$._mintedAmounts[msg.sender] -= amount;

+ }

emit Burned(msg.sender, from, amount);

}

• Vault.sol: The depositWithPermit() function currently immediately copies the contents of the per-

mit parameter into memory due to specifying this as data location. This is unnecessary and somegas can be saved avoiding copying by specifying calldata as parameter data location.
- function depositWithPermit(uint96 pocketId, uint256 amount, IPermit2.PermitTransferFrom memory

permit, bytes calldata signature)↪→

+ function depositWithPermit(uint96 pocketId, uint256 amount, IPermit2.PermitTransferFrom calldata

permit, bytes calldata signature)↪→

Cryptex: None of these findings have a significant impact on the efficiency or security of the protocol.Some of the things pointed out were addressed within the following Pull Requests:
• PR 9.
• PR 10.

Cantina Managed: Fixed.

16

https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/TCAPV2.sol#L51-L61
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol#L149
https://github.com/cryptexfinance/tcapv2.0/pull/9
https://github.com/cryptexfinance/tcapv2.0/pull/10

4.5 Informational
4.5.1 Create Token Integration Checklist
Severity: Informational
Context: (No context files were provided by the reviewer)
Description: Like other contracts of Cryptex before, TCAPv2 too is planned to be under control of Com-munity Governance (DAO). This includes the creation of additional Vaults, of which there'll likely be anincreasing amount in order to attract liquidity.
To allow the community to verify the Vaults being added, an important aspect is checking whether thetoken supposed to serve as collateral is properly compatible with the protocol. For this purpose, it'srecommendable to provide those who will vote on such proposals a "Token Integration Checklist".
Recommendations: We provide the following recommendations regarding the creation of such a check-list based on our review and understanding of the protocol:

• Token Standards: This protocol only deals with underlying tokens of ERC-20 compatible standards.There exist other fungible token standards such as ERC-1155, but these are not supported.
• Double-Entry-Point Tokens: i.e. tokens that share the same tracking of balances but have two sep-arate contract addresses from which this balances can be controlled. Typically protocols that havesweeping functions (for rescuing funds) are vulnerable to these since they bypass checks prevent-ing sweeping of underlying funds. Pocket contracts do not appear to be vulnerable to this and usingsuch tokens as underlying should not cause any issues.
• Token Error Handling: ERC-20 Tokens historically handle errors in two possible ways, they eitherrevert on errors or they simply return a falseboolean as a result. With the fixes applied, this protocolcorrectly handles both cases thanks to usage of solady SafeTransferLib's safeTransferFrom().
• ERC-20 Optional Decimals: Within the ERC-20 standard, the existence of a decimals() functionis optional. This protocol however requires it to be present (BaseOracleUSD.assetDecimals) andconstant over its lifetime. Assuming the function is implemented by the token, it should return itsvalue as uint8 type, if not, the value must be below 255.
• Tokens with Callbacks: There exist various standard extensions such as ERC-223, ERC-677, ERC-777, etc., as well as custom ERC-20 compatible token implementations that call the sender, receiver,or both, during a token transfer. Furthermore, such implementations may choose to call before orafter the token balances were updated. This is especially dangerous since it may allow re-enteringthe protocol and exploit incomplete state updates.

– To avoid any issues with such tokens, it's recommended to follow the CEI-pattern. There's cur-rently only one place apparent where this pattern is not being followed: Within Vault.sol thewithdrawal of tokens should come after the burning of TCAP debt.
```diff

- pocket.withdraw(user, liquidationReward, msg.sender);

TCAPV2.burn(msg.sender, burnAmount);

+ pocket.withdraw(user, liquidationReward, msg.sender);

```

• Deflationary/Inflationary or Rebasing Tokens: There are tokens (such as Aave's aToken) whichincrease in balance over time, or decrease in balance over time (various algorithmic stable coins), thismay cause accounting issues within smart contracts holding them. Pockets should be resistant toissues related to this since they take account of shares, not the actual underlying balances. Whetheran underlying token decreases or increases in balance, it would effectively decrease or increase thelocked underlying value behind each share.
• Tokens with Transfer Fees: There are tokens which may charge a fee for transfers. This fee couldbe applied on the value being sent, decreasing the amount reaching the receiver, or it could beapplied on the sender's remaining balance. Pocket contracts are currently not equipped to handleeither of these cases appropriately, and won't be without significant changes to how deposits andwithdrawals are handled.
• Tokenswith strict AllowanceHandling: There exist tokenswhich errorwhen attempting to changean existing token allowance from one non-zero value to another non-zero value. At the momentthis is only relevant for the AaveV3Pocket contract which should be able to handle this whether the

17

https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol#L245-L246

logic stays as is (approving the exact amount to be deposited) or is changed according to otherrecommendations within this audit (unlimited approval once in the constructor).
• Non-Standard Decimals: Tokens typically have 18 decimals, but some deviate from this, usuallytowards lower numbers. During this audit we've pointed out a few places where the handling ofsuch non-standard decimals was lacking. Assuming those were all places and they've been fixedappropriately, this protocol should be able to handle such assets.
• Extreme Scale Deviations: There may be tokens which have both

1. Very low decimal values and...
2. Are very valuable.

Meaning that the balances when dealing with this token could be so small that rounding errors leadto significant differences in monetary value. It should be checked whether tokens fall into sucha category and if potentially so, it should be mathematically verified whether rounding errors arewithin acceptable ranges.
• Oracle Integration: For an asset to be used as collateral within this protocol it must have an ac-tive Chainlink Price Feed. Furthermore, the AggregatedChainlinkOracle contract adjusts the priceresponses to 18 decimals based on the reported decimals() of the feed. As a sanity check it shouldbe both verified that:

1. This decimals value indeed is below 18 as expected by the contract and...
2. The reported decimals value truthfully matches the actual prices currently reported by the feed.

Consider the consulting the Crytic Checklist (Trail of Bits) for further inspiration.
Cryptex: Acknowledged.
Cantina Managed: Acknowledged.
4.5.2 Upgradeability: Automate verification of storage changes
Severity: Informational
Context: TCAPV2.sol#L12-L16
Description: The TCAP Token, its Vaults and Pockets are upgradeable through the use of TransparentProxies. For storage management, the contracts specifically make use of the ERC-7201 Namespaced Stor-age Layout pattern.
While this is different to the previous more common pattern of using _gaps[] to ensure that variablesmay be added to upgradeable contracts at a later time, what remains unchanged is the need to ensurethat any changes made to existing variables (ie. reusing existing storage slots for new storage variables)are compatible.
OpenZeppelin provides an Upgrades Plugin for Foundry that automates such compatibility checks be-tween contract upgrades.
Recommendation: Consider setting up CI rules that automatically check changes to namespaced storagefor issues.
Cryptex: Acknowledged.
Cantina Managed: Acknowledged.

18

https://data.chain.link/feeds
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/oracle/AggregatedChainlinkOracle.sol#L23-L24
https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/TCAPV2.sol#L12-L16
https://eips.ethereum.org/EIPS/eip-7201
https://eips.ethereum.org/EIPS/eip-7201
https://docs.openzeppelin.com/upgrades-plugins/1.x/
https://docs.openzeppelin.com/contracts/5.x/upgradeable#namespaced_storage

4.5.3 Various small improvements and other nitpicks
Severity: Informational
Context: AaveV3Pocket.sol#L33, AaveV3Pocket.sol#L4, BasePocket.sol#L108-L116, De-ployTCAP.s.sol#L11, DeployTCAP.s.sol#L42, DeployTCAP.s.sol#L5, FeeCalculatorLib.sol#L4,IOracle.sol#L17-L18, LiquidationLib.sol#L4, Vault.sol#L141, Vault.sol#L162-L164, Vault.sol#L247,Vault.sol#L263, Vault.sol#L330
Description: During the code review, a variety of smaller changes with the goal of improving readabilityand following general best practices were suggested.
Recommendations: Fix those highlighted nitpicks. These are some of the more noteworthy findings:

• Vault.sol: Although there is no apparent issue with specifying zero amounts when interacting withthe Vault contract (Deposit, Withdrawal, Minting, or Burning), it's still one of those extreme caseswhere one could consider "failing early" to ensure nothingweird can happen down the line. Considerexplicit checks against 0 amounts that wouldn't have any desirable effect anyway.
function deposit(uint96 pocketId, uint256 amount) external returns (uint256 shares) {

+ require(amount > 0);

// ...

• Vault.sol: Functions that should still function normally for disabled pockets (such as withdraw())won't call _getPocket() and therefore also skip over its implicit sanity check on whether that pocketexists at all. Consider validating pocketId parameters of external functions by requiring the pocket'saddress to be non-zero address.
function withdraw(uint96 pocketId, uint256 amount, address to) external ensureLoanHealthy(msg.sender,

pocketId) returns (uint256 shares) {↪→

// @audit should be able to withdraw even if pocket is disabled

IPocket pocket = _getVaultStorage().pockets[pocketId].pocket;

+ require(address(pocket) != address(0x0));

• AaveV3Pocket.sol: The _balanceOf() function of AaveV3Pocket.sol is lacking a check to preventdivision-by-zerowhich the _balanceOf() function from BasePocket.sol haswhich is being overriden.Consider adding this check here as well for consistency:
function _balanceOf(address user) internal view override returns (uint256) {

+ uint256 totalShares_ = totalShares();

+ if (totalShares_ == 0) return 0;

- return sharesOf(user) * OVERLYING_TOKEN.balanceOf(address(this)) / totalShares();

+ return sharesOf(user) * OVERLYING_TOKEN.balanceOf(address(this)) / totalShares_;

}

• BasePocket.sol: In _balanceOf() and _totalBalance() the balance of OVERLYING_TOKEN should beused, instead of UNDERLYING_TOKEN, this is because by design the Pocket holds OVERLYING_TOKENtokens. Although not being an issue, since BasePocket has OVERLYING_TOKEN == UNDERLYING_TOKENand AaveV3Pocket is already implemented correctly, consider adjusting this for consistency.
function _balanceOf(address user) internal view virtual returns (uint256) {

uint256 totalShares_ = totalShares();

if (totalShares_ == 0) return 0;

- return sharesOf(user) * UNDERLYING_TOKEN.balanceOf(address(this)) / totalShares_;

+ return sharesOf(user) * OVERLYING_TOKEN.balanceOf(address(this)) / totalShares_;

}

function _totalBalance() internal view virtual returns (uint256) {

- return UNDERLYING_TOKEN.balanceOf(address(this));

+ return OVERLYING_TOKEN.balanceOf(address(this));

}

Cryptex: As none of these have any significant impact on the protocol's security, the Cryptex Team ad-dressed some of these findings at their own discretion:
• PR 9.
• PR 11.
• PR 13.

19

https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L33
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/AaveV3Pocket.sol#L4
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/BasePocket.sol#L108-L116
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/script/DeployTCAP.s.sol#L11
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/script/DeployTCAP.s.sol#L11
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/script/DeployTCAP.s.sol#L42
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/script/DeployTCAP.s.sol#L5
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/lib/FeeCalculatorLib.sol#L4
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/interface/IOracle.sol#L17-L18
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/lib/LiquidationLib.sol#L4
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L141
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L162-L164
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L247
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L263
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L330
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/AaveV3Pocket.sol#L33
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/BasePocket.sol#L108-L116
https://github.com/cryptexfinance/tcapv2.0/pull/9
https://github.com/cryptexfinance/tcapv2.0/pull/11
https://github.com/cryptexfinance/tcapv2.0/pull/13

• Commit d1799f6e.
• Commit 3ef6bd16.

Cantina Managed: Fixed.
4.5.4 Review of TokenExchangeSetIssuer
Severity: Informational
Context: (No context files were provided by the reviewer)
Description: While this audit was mostly centered around the Cryptex's TCAPv2 repository, a single pe-ripheral contract named TokenExchangeSetIssuer was also part of the scope, although part of a differentrepository (Cryptex's crypdex).
Crypdex too is about the creation of Index Tokens, but while TCAPv2 is a synthetic token following theTotal Crypto Market Capitalization (divided by 10 billion), this codebase uses SetTokens where a singletoken is in fact backed by a basket (set) of the actual tokens it is indexing.
To mint a SetTokens you therefore have to deposit the correct amounts of each of the underlying tokens,an operation that is rather tedious to execute without automation, which is where the TokenExchange-

SetIssuer contract in question comes in. The goal is for there to be a User Interface in which you simplyspecify the amount of SetTokens you'd like to obtain and provide an allowance for a single asset withwhich all the tokens belonging to the index will be obtained with (under the hood the contract will makeswaps on Uniswap and Paraswap).
Being a peripheral contract means that TokenExchangeSetIssuer does not have any special access withinthe system. Rather, it is a helper contract outside of the protocol that anyone could deploy for themselvesand it would work just fine. In the normal case, it should never hold any user funds for longer than asingle transaction, during which a user is calling it to either buy or sell the necessary underlying tokensfor obtaining or discarding some amount of SetTokens.
As such there's practically one critical concern: There may not be any way to make unauthorized trans-

ferFrom() calls that move funds that TokenExchangeSetIssuer has been approved to use. In other words,while the contract should normally never hold funds, it'll very likely end up having allowances to manyuser's funds, and it must not happen that another use make use of funds that are not their own.
Recommendations: No critical issues in regards to the unauthorized transfer of user-approved fundswere found. However, various suggestions around hardening, simplifying and optimizing the code weregiven, such as

• Upgrading Solidity from 0.6.10 to a newer version, preferably 0.8.26, which is the same version usedin TCAPv2. While most of the contracts within the crypdex repository make use of 0.6.10, thereshouldn't be much of an issue using a higher version for a peripheral contract that only interactswith crypdex from "outside".
• This upgrade allows making use of the various new language features and bugfixes, but was specif-ically suggested in order to avoid the use of inline assembly, which is notorious for introducing un-expected behavior.
• The manner by which the contract ensured only swap functions of legitimate exchanges could becalled appeared unnecessarily restrictive and inefficient. A change to a simpler whitelist-based im-plementation, specifically restricting the addresses and function signatures being called, was sug-gested.
• It was noted that under some circumstances (such as using incorrect swap functions or sendingfunds by accident) funds could accumulate on the contract. The contract's logic attempted to takeaccount of such "stuck" funds, prevent their usage by other users, and allow their rescue by an ad-ministrator. But as thesemeasures canbebypassed, it's recommended to add appropriatewarningsfor developers where possible to prevent such accumulations in the first place.

Cryptex: The Cryptex teammade several changes to TokenExchangeSetIssuer on PR 6, addressing manyof the things pointed out during the review. The PR is split into 3 commits:
• Summary of Commit 1:

– Reverted to code froman earlier commit, enhancing contract flexibility to allowmore exchangesto be whitelisted and invoked in the future.
20

https://github.com/cryptexfinance/tcapv2.0/commit/d1799f6e22fa92e7e3c67ea71efb0e16a77e3413
https://github.com/cryptexfinance/tcapv2.0/commit/3ef6bd16edededb3779ffafd1e769c1b67e04d32
https://github.com/cryptexfinance/tcapv2.0
https://github.com/cryptexfinance/crypdex/blob/55204adada15eacec36c1e522affd469d99de36e/contracts/extensions/TokenExchangeSetIssuer.sol
https://github.com/cryptexfinance/crypdex/pull/6/
https://github.com/cryptexfinance/crypdex/commit/8014ca6587da67c8f8a51f7e7c16e4975c958a1e

– Updated the whitelisting logic to create unique identifiers using the target contract address andthe 4-byte function selector.
– Added warnings advising users not to send tokens or ETH directly to the contract.
– Included a caution that any residual dust left from buying or selling will not be refunded.

• Summary of Commit 2:
– Added OpenZeppelin v5.0.2 to support Solidity v0.8.26, aliasing it as @openzeppelin-contracts-
5 to differentiate from the version used by core contracts.

• Summary of commit 3:
• Introduced new interfaces compatible with Solidity v0.8.26.
• Upgraded the Solidity version to v0.8.26 for the TokenExchangeIssuer.
• Got rid of the assembly code introduced in commit 1 for converting bytes to bytesN.
• Leveraged the updated Solidity version to replace require messages with custom error handling.
• Emitted events for the following functions: whitelistFunctions, revokeWhitelistedFunctions,
addSetTokenIssuanceModules, and removeSetTokenIssuanceModules.

Suggestions that were not implemented:
• Couldn't find ReentrancyGuardTransient in the latest OpenZeppelin version v5.0.2. It only appearsin the master branch, so I was unable to replace ReentrancyGuard with ReentrancyGuardTransient.

Cantina Managed: Fixed.
4.5.5 Deposit storage struct has unused members
Severity: Informational
Context: Vault.sol#L24-L27
Description: The Vault contract makes extensive use of struct types for managing its storage. It appearsthat the struct used for tracking data on user deposits has attributes that aren't actually used anywherewithin the Vault's logic.
Recommendation: Remove the dead code:

struct Deposit {

- address user;

- uint96 pocketId;

- bool enabled;

uint256 mintAmount;

uint256 feeIndex;

uint256 accruedInterest;

}

Cryptex: Addressed in PR 11.
Cantina Managed: The Cryptex Team has addressed this issue within PR 11.
4.5.6 Use safeTransfer() instead of transfer() in BasePocket

Severity: Informational
Context: BasePocket.sol#L105
Description: While walking through the code base during the audit's kickoff meeting, the Cryptex teamnoticed that one of the token transfers did not make use of safeTransfer(). This finding serves as areminder for this to be fixed.
Recommendation: The issue was specifically identified within the BasePocket.sol file:
- UNDERLYING_TOKEN.transfer(recipient, amountUnderlying);

+ address(UNDERLYING_TOKEN).safeTransfer(recipient, amountUnderlying);

21

https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/Vault.sol#L24-L27
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/Vault.sol#L24-L31
https://github.com/cryptexfinance/tcapv2.0/pull/11
https://github.com/cryptexfinance/tcapv2.0/pull/11
https://cantina.xyz/code/9811eff7-1a0b-4921-9cf2-a6e445b52759/tcapv2.0/src/pockets/BasePocket.sol#L105
https://github.com/cryptexfinance/tcapv2.0/blob/7c3050a56e3f1bad1a100f3e506744d0c71a8807/src/pockets/BasePocket.sol#L105

Cryptex: Addressed in PR 8.
Cantina Managed: The Cryptex Team has addressed this issue within PR 8.

22

https://github.com/cryptexfinance/tcapv2.0/pull/8
https://github.com/cryptexfinance/tcapv2.0/pull/8

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Cryptex architecture
	Findings
	High Risk
	Calculating liquidationReward without considering collateral decimals
	Depositing to Pocket is vulnerable to inflation attacks
	Calculating interest without considering the collateral decimals
	Liquidated person's debts are not reduced in liquidation

	Medium Risk
	Incorrect calculation of interests when taking fee

	Low Risk
	Accumulated fee may be lost
	Lack of integration with Aave's reward distribution
	Harden Chainlink Price Feed integration
	Correct overlying aToken can be determined automatically
	Use of deprecated Aave V3 Pool deposit function

	Gas Optimization
	Public constants needlessly pollute function selection
	Various small gas optimizations

	Informational
	Create Token Integration Checklist
	Upgradeability: Automate verification of storage changes
	Various small improvements and other nitpicks
	Review of TokenExchangeSetIssuer
	Deposit storage struct has unused members
	Use safeTransfer() instead of transfer() in BasePocket

